
Mikaela Angelina Uy 1,2, Ricardo Martin-Brualla 2, Leonidas Guibas 1,2 , Ke Li 2,3

SCADE: NeRFs from Space Carving with 
Ambiguity-aware Depth Estimates

Stanford 
University 1

Google 2

Simon Fraser 
University 3

Sparse Input 
Views

Ambiguity-Aware Depth 
Estimates

…
NeRFPrior

…

Visit us at Poster: THU-AM-004



2

Overview

• There can be multiple, equally valid depth estimates given a single 
image.

• I.e. Monocular depth is inherently ambiguous.
Albedo vs Shading Scale / Degree of Convexity

Possible depth maps Possible depth maps

Possible depth maps

Non-opaque surfaces

[1] The Bas-Relief Ambiguity. P. N. Belhumeur, et. al., IJCV 1999.
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Overview

• Our prior represents depth as a 
distribution, to handle ambiguity.
• This distribution can be 

multimodal.

• Represent ambiguities and 
capture variable modes through 
samples via conditional Implicit 
Maximum Likelihood Estimation 
(cIMLE).

[2] Multimodal Image Synthesis with Conditional Implicit Maximum Likelihood Estimation. K. Li, et. al., IJCV 2020.

…
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Overview

[3] A Theory of Shape by Space Carving. K. Kutulakos and S. Seitz, IJCV 2000.

• Resolve ambiguities by fusing
together information from 
multiple views.

• Mode seeking: finds the 
consistent agreement across 
views.

• Sample-based loss on the 
distribution instead of the 
moments leads to supervision 
in 3D instead of 2D.

… …
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Overview
In-the-Wild Scenes Scannet

Tanks and Temples
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Idea

Ambiguity Distribution
Fuse: 
Space 

Carving

Prior: 
Depth

Generalize 
Space 

Carving
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Idea Prior: 
Depth

• Monocular Depth Estimation
• Category agnostic

• Generalizes to in-the-wild scenes

NYU Scannet KITTI ETH3D DIODE In-the-Wild Scenes

[4] Learning to Recover 3D shape from a Single Image. W. Yin, et. al., CVPR 2021.

Image taken from [1]
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Idea

• Fuse
• How do we fuse depths from multiple views?

• Space Carving!

Fuse: 
Space 

Carving

[3] A Theory of Shape by Space Carving. K. Kutulakos and S. Seitz, IJCV 2000.
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Idea

• Classical Space Carving
• Finds the geometry that satisfies the different views.

• “Carves” out empty space

• Works great with ground truth depth. But…

Fuse: 
Space 

Carving

[3] A Theory of Shape by Space Carving. K. Kutulakos and S. Seitz, IJCV 2000.

Image taken from [3]
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Idea

• Monocular depth is inherently ambiguous.

Ambiguity

Albedo vs Shading Scale / Degree of Convexity

Possible depth maps Possible depth maps
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Idea

• Represent depth as a distribution.
• Distribution can be multimodal.

Albedo vs Shading Scale / Degree of Convexity

Possible depth maps Possible depth maps

Distribution

Possible depth maps

Multimodal Example
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Idea

• Generalized space carving
• Classical space carving only works with point estimates, i.e. no uncertainties.

Generalize 
Space 

Carving
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Idea

• Generalized space carving
• Classical space carving only works with point estimates, i.e. no uncertainties.
• Probabilistic analogue: Ambiguities are only resolved once information on multiple views are 

fused together.
• Pick the mode that satisfies the different views.

• Mode seeking vs mean seeking:
• Expected depth would fall to the mean of multimodal distributions. The mean is not necessarily 

a valid depth.
• We instead want to find a consistent mode, which is valid.

Generalize 
Space 

Carving

Possible depth maps

Multimodal Example
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Our Ambiguity-Aware Prior

• Our prior represents depth as a distribution, to handle ambiguity.
• This distribution can be multimodal.

• Represent ambiguities and capture variable modes through samples via 
conditional Implicit Maximum Likelihood Estimation (cIMLE).

…

𝐺

[2] Multimodal Image Synthesis with Conditional Implicit Maximum Likelihood Estimation. K. Li, et. al., IJCV 2020.
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Our Ambiguity-Aware Prior

…

𝐺

[2] Multimodal Image Synthesis with Conditional Implicit Maximum Likelihood Estimation. K. Li, et. al., IJCV 2020.
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[4] Learning to Recover 3D shape from a Single Image. W. Yin, et. al., CVPR 2021.
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Our Ambiguity-Aware Depth Estimates
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Why does it work?
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SCADE

Samples from our Ambiguity-Aware Prior

…

Input View 1

Ambiguous!
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SCADE

Samples from our Ambiguity-Aware Prior

…

Input View 1

Samples from our Ambiguity-Aware Prior

…

Input View 2

• Resolve ambiguities by fusing together information from multiple views.
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Space Carving Intuition
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SCADE

• We distill the consistent hypotheses
for each view into a global 3D 
geometry represented with a NeRF.

• We introduce our novel space 
carving loss on the two 
distributions:

1. Ambiguity-aware prior
2. Ray termination distance from NeRF

… …
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SCADE

Our Space Carving Loss

• The learned depth distribution 
should be consistent with some
depth hypothesis in every view.

• Mode seeking : finds the 
consistent agreement across 
views.

• Sample-based loss on the 
distribution instead of moments 
leads to supervision in 3D instead 
of 2D.
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Results – In-the-Wild Demo
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Results – Scannet Demo
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Results – Tanks and Temples Demo
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Results
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Results
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Thank you!

Visit our project page!

Poster: THU-AM-004


