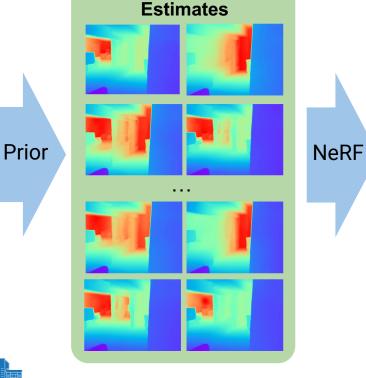
SCADE: NeRFs from Space Carving with Ambiguity-aware Depth Estimates

Mikaela Angelina Uy ^{1,2}, Ricardo Martin-Brualla ², Leonidas Guibas ^{1,2}, Ke Li ^{2,3}

Ambiguity-Aware Depth

Sparse Input Views

JUNE 18-22, 2023 貰



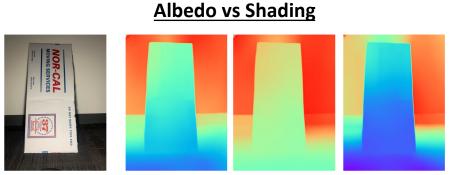
<image>

Vanilla NeRF

DDP

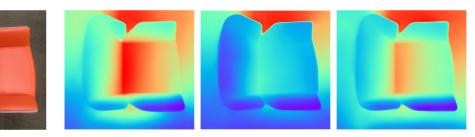
Visit us at Poster: THU-AM-004

- There can be multiple, equally valid depth estimates given a single image.
- I.e. Monocular depth is inherently ambiguous.



Possible depth maps

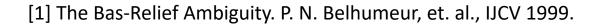
Scale / Degree of Convexity



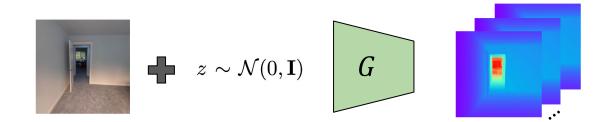
Possible depth maps

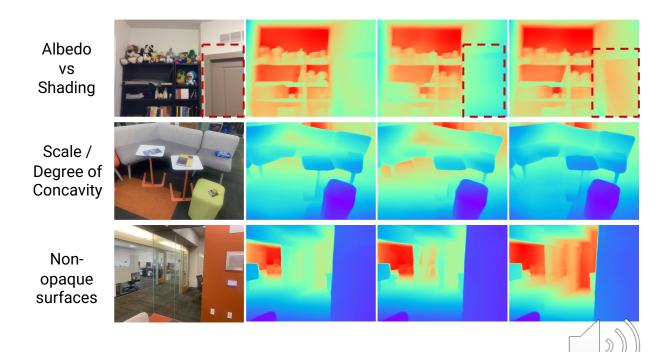
Non-opaque surfaces Image: Supervision of the supervision of t

Possible depth maps



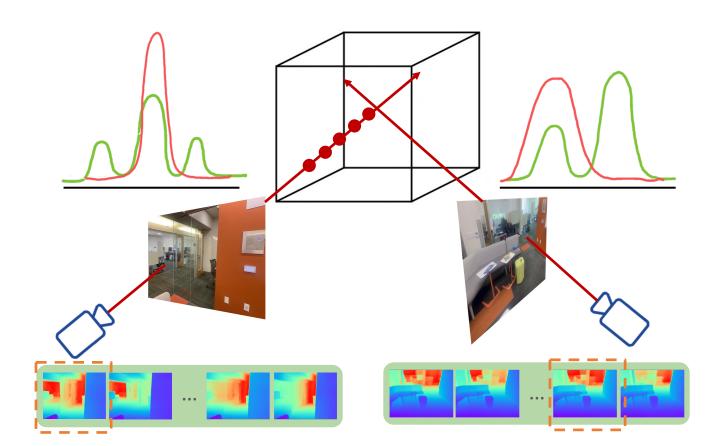
- Our prior represents depth as a distribution, to handle ambiguity.
 - This distribution can be multimodal.
- Represent ambiguities and capture variable modes through samples via conditional Implicit Maximum Likelihood Estimation (cIMLE).





[2] Multimodal Image Synthesis with Conditional Implicit Maximum Likelihood Estimation. K. Li, et. al., IJCV 2020.

- Resolve ambiguities by fusing together information from multiple views.
- Mode seeking: finds the consistent agreement across views.
- Sample-based loss on the distribution instead of the moments leads to supervision in 3D instead of 2D.



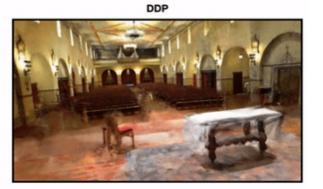
[3] A Theory of Shape by Space Carving. K. Kutulakos and S. Seitz, IJCV 2000.

In-the-Wild Scenes

SCADE (Ours)

Tanks and Temples

Vanilla NeRF



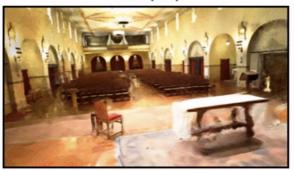
<u>Scannet</u>

Vanilla NeRF

DDP (in-domain)

DDP (out-domain)

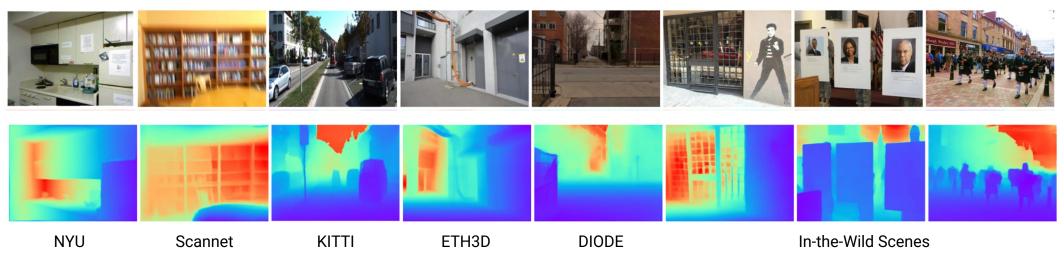
SCADE (Ours)



Prior: Depth Fuse: Space Carving Ambiguity Distribution Generalize Space Carving

- Monocular Depth Estimation
 - Category agnostic
 - Generalizes to in-the-wild scenes

Image taken from [1]

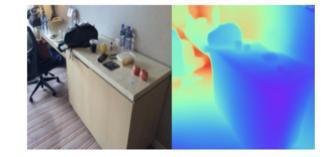


 $\left(\right)$

[4] Learning to Recover 3D shape from a Single Image. W. Yin, et. al., CVPR 2021.

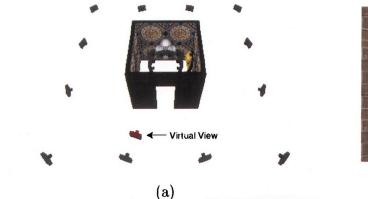
• Fuse

- How do we fuse depths from multiple views?
- Space Carving!



[3] A Theory of Shape by Space Carving. K. Kutulakos and S. Seitz, IJCV 2000.

- Classical Space Carving
 - Finds the geometry that satisfies the different views.
 - "Carves" out empty space



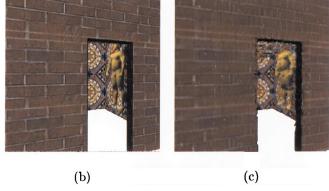
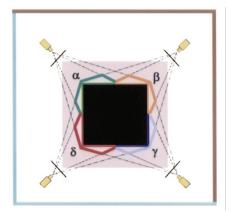


Image taken from [3]



• Works great with ground truth depth. But...

[3] A Theory of Shape by Space Carving. K. Kutulakos and S. Seitz, IJCV 2000.

• Monocular depth is inherently ambiguous.

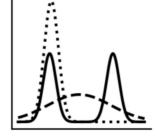
Possible depth maps

Possible depth maps

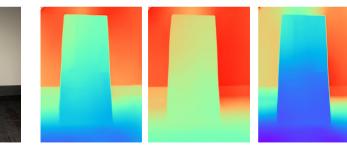
Idea

- Represent depth as a distribution.
 - Distribution can be **multimodal**.

Albedo vs Shading

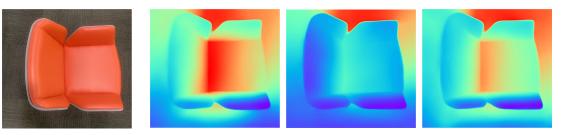


NOR-CAL NORSEEVICES



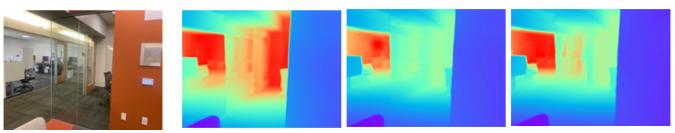
Possible depth maps

Scale / Degree of Convexity



Possible depth maps

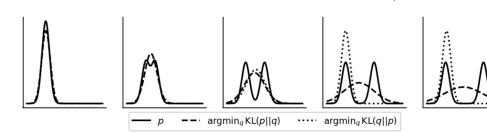
Multimodal Example



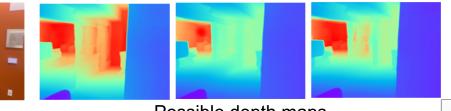
Possible depth maps

- Generalized space carving
 - Classical space carving only works with point estimates, i.e. no uncertainties.

- Generalized space carving
 - Classical space carving only works with point estimates, i.e. no uncertainties.
 - Probabilistic analogue: Ambiguities are only resolved once information on multiple views are fused together.
 - Pick the mode that satisfies the different views.
- Mode seeking vs mean seeking:
 - Expected depth would fall to the mean of multimodal distributions. The mean is not necessarily a valid depth.
 - We instead want to find a consistent mode, which is valid.



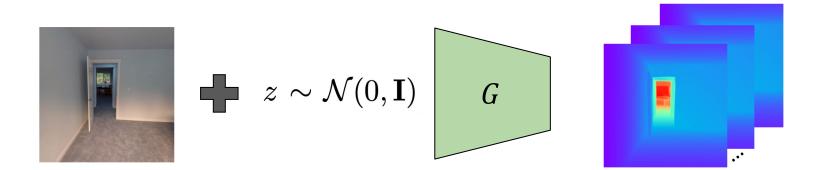
Multimodal Example



Our Ambiguity-Aware Prior

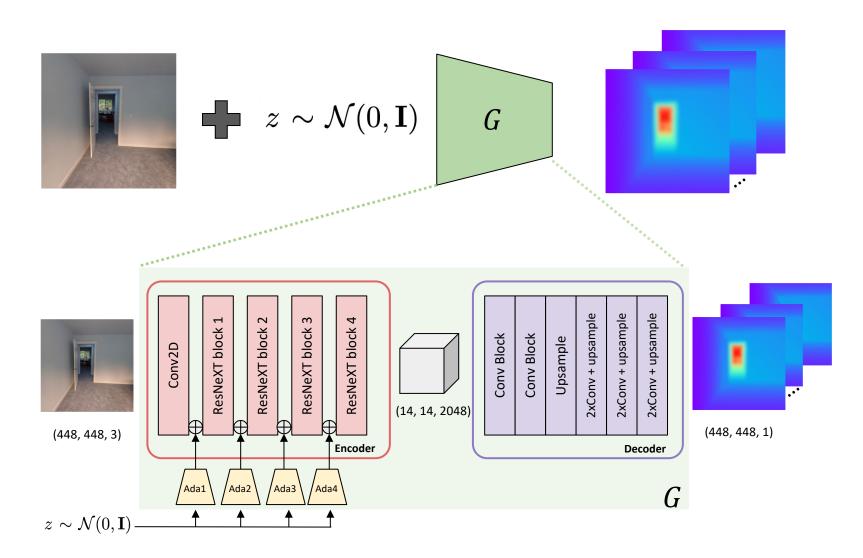
- Our prior represents depth as a distribution, to handle ambiguity.
 - This distribution can be **multimodal**.

• Represent ambiguities and capture variable modes through **samples** via conditional Implicit Maximum Likelihood Estimation (cIMLE).



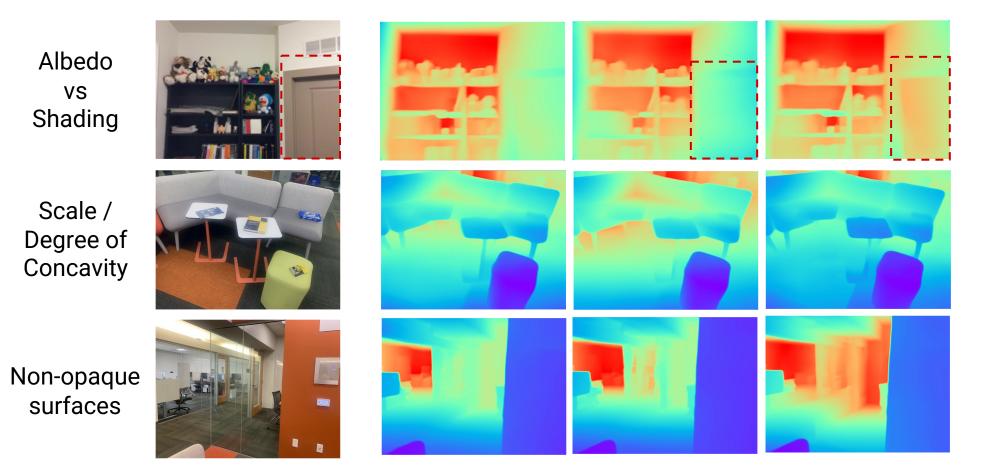
[2] Multimodal Image Synthesis with Conditional Implicit Maximum Likelihood Estimation. K. Li, et. al., IJCV 2020.

Our Ambiguity-Aware Prior

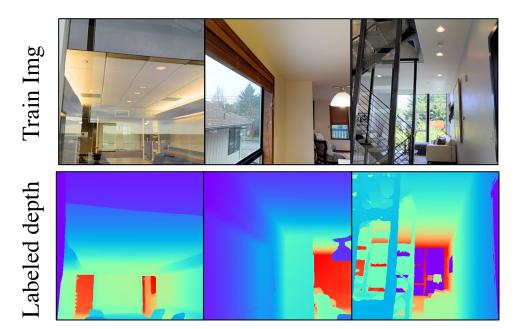


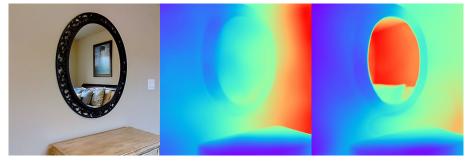
[2] Multimodal Image Synthesis with Conditional Implicit Maximum Likelihood Estimation. K. Li, et. al., IJCV 2020.[4] Learning to Recover 3D shape from a Single Image. W. Yin, et. al., CVPR 2021.

Our Ambiguity-Aware Depth Estimates



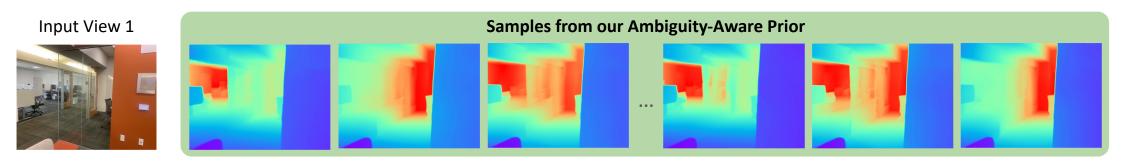
Why does it work?





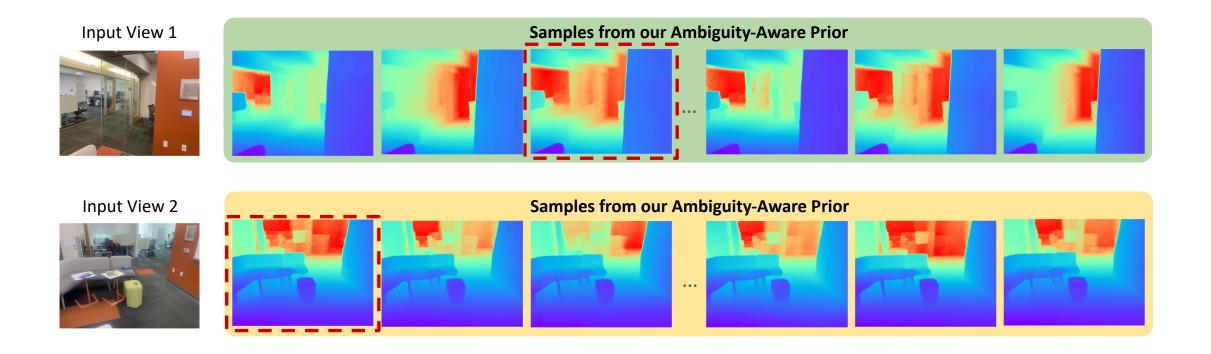
Test Img Samples from our ambiguityaware prior

SCADE



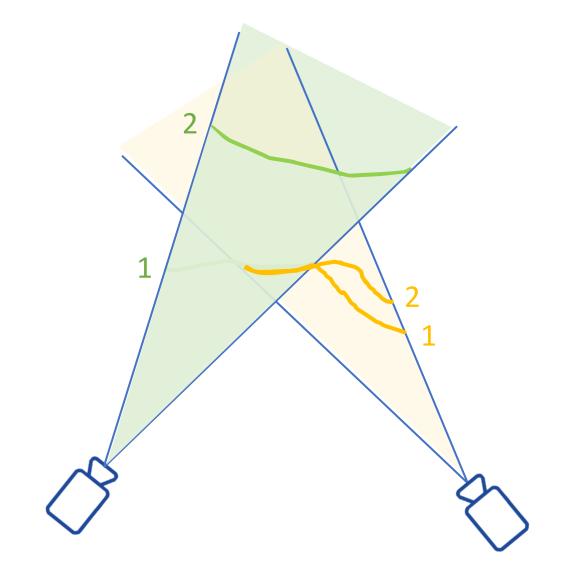
Ambiguous!

SCADE



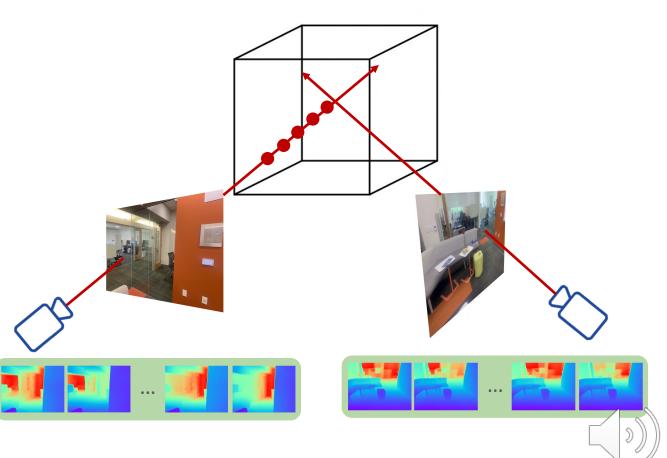
• Resolve ambiguities by **fusing** together information from multiple views.

Space Carving Intuition



SCADE

- We distill the consistent hypotheses for each view into a global 3D geometry represented with a NeRF.
- We introduce our novel **space carving loss** on the two distributions:
 - 1. Ambiguity-aware prior
 - 2. Ray termination distance from NeRF

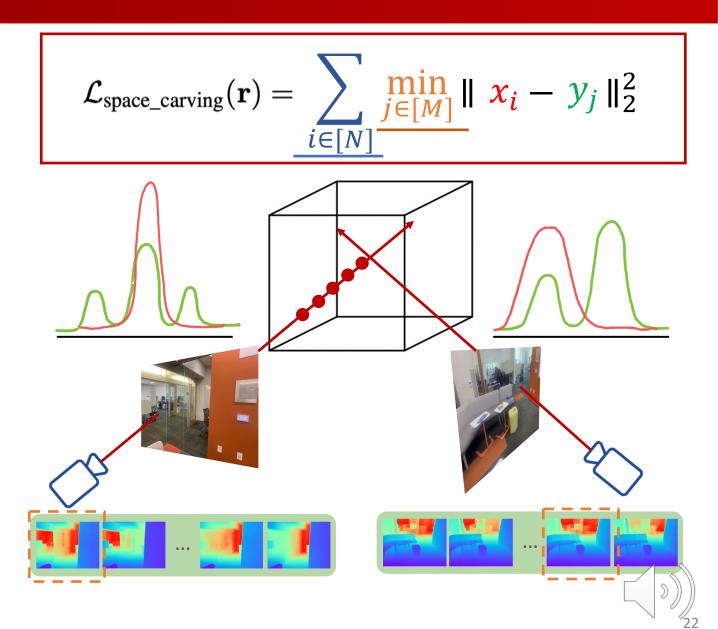


SCADE

Our Space Carving Loss

 The learned depth distribution should be consistent with some depth hypothesis in every view.

- Mode seeking : finds the consistent agreement across views.
- Sample-based loss on the distribution *instead of moments* leads to supervision in 3D instead of 2D.



Results – In-the-Wild Demo

Vanilla NeRF

Results – Scannet Demo

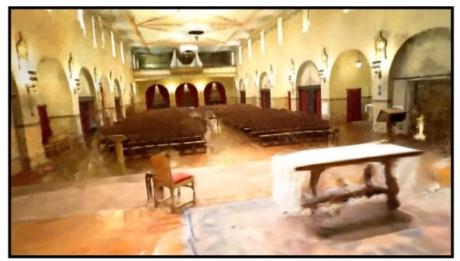
Vanilla NeRF

DDP (in-domain)

DDP (out-domain)

Results – Tanks and Temples Demo

DDP



	$PSNR \uparrow$	SSIM ↑	$ $ LPIPS \downarrow
Vanilla NeRF [24]	19.03	0.670	0.398
NerfingMVS [47]	16.29	0.626	0.502
IBRNet [41]	13.25	0.529	0.673
MVSNeRF [3]	15.67	0.533	0.635
DS-NeRF [6]	20.85	0.713	0.344
DDP [32]	19.29	0.695	0.368
SCADE (Ours)	21.54	0.732	0.292

Table 1. ScanNet Results. Results for DS-NeRF and NerfingMVS follow what was reported in prior literature [32]. Because our setting requires out-of-domain priors, the results for DDP are with out-of-domain priors. The results of DDP with in-domain priors are (20.96, 0.737, 0.236) for PSNR, SSIM and LPIPS, respectively.

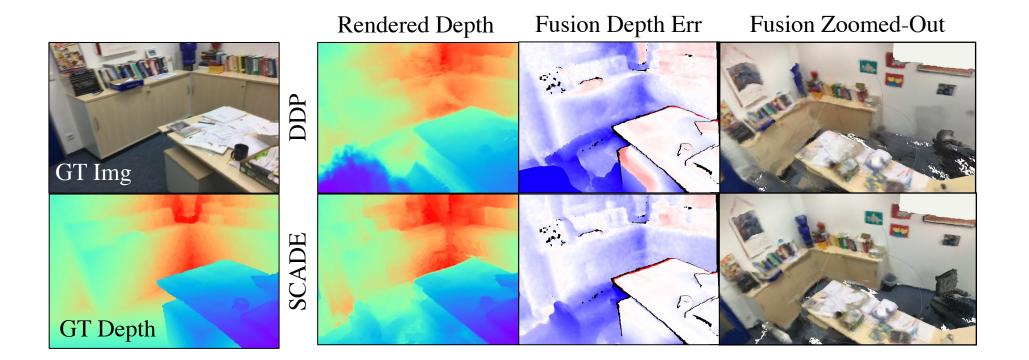
	PSNR ↑	SSIM ↑	$ $ LPIPS \downarrow
Vanilla NeRF [25]	19.09	0.700	0.437
DDP [33]	19.84	0.727	0.382
SCADE	21.48	0.736	0.356

Table 2.	In-the-wild	Results.
----------	-------------	----------

	$PSNR \uparrow$	$ $ SSIM \uparrow	$ $ LPIPS \downarrow
Vanilla NeRF [6]	17.19	0.559	0.457
			0.377
DDP [7] SCADE	18.23 20.32	0.631	

Table 1. Quantitative results for the Tanks and Temples [3]dataset.

Results



Thank you!

Poster: THU-AM-004

