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Overview

* There can be multiple, equally valid depth estimates given a single
image.

* |.e. Monocular depth is inherently ambiguous.

Albedo vs Shading Scale / Degree of Convexity

BRT
g

Possible depth maps

Non-opaque surfaces
—

Possible depth maps [/ ) -fi‘.}
[1] The Bas-Relief Ambiguity. P. N. Belhumeur, et. al., JCV 1999. 3/1//,,2



Overview

e Qur prior represents depth as a
distribution, to handle ambiguity.

e This distribution can be

multimodal.
Albedo
Vs
. oy e Shading
* Represent ambiguities and
capture variable modes through Seale/
egree.of
samples via conditional Implicit ~ *™"
Maximum Likelihood Estimation None
(cIMLE). surfaces |

[2] Multimodal Image Synthesis with Conditional Implicit Maximum Likelihood Estimation. K. Li, et. al., JCV 2020. \ 3



Overview

* Resolve ambiguities by fusing
together information from

multiple views. /L
* Mode seeking: finds the AN

consistent agreement across
Views.

 Sample-based loss on the
distribution instead of the =<

moments leads to supervision E:_'IE.I _‘I;’. H“

in 3D instead of 2D. -

[3] A Theory of Shape by Space Carving. K. Kutulakos and S. Seitz, JCV 2000. N 7,



Overview

In-the-Wild Scenes Scannet

Vanilla NeRF

Vanilla NeRF DDP (out-domain)

SCADE (Ours)

Tanks and Temples




Fuse: Generalize
Space Ambiguity Distribution Space
Carving Carving

Prior:
Depth




Fuse: Generalize
Space Ambiguity Distribution Space
Carving Carving

* Monocular Depth Estimation
* Category agnostic

* Generalizes to in-the-wild scenes

Image taken from [1]
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[4] Learning to Recover 3D shape from a Single Image. W. Yin, et. al., CVPR 2021. N ‘////‘”‘7



Generalize
Ambiguity Distribution Space
Carving

* Fuse
* How do we fuse depths from multiple views?

* Space Carving!

= 19))
[3] A Theory of Shape by Space Carving. K. Kutulakos and S. Seitz, IJCV 2000. . f/,//'"“8



* Classical Space Carving
* Finds the geometry that satisfies the different views.

e “Carves” out empty space

o <«— virtual View
¢ “ » 4
(a) (b) (c)

* Works great with ground truth depth. But...

[3] A Theory of Shape by Space Carving. K. Kutulakos and S. Seitz, JCV 2000.

Image taken from [3]




Fuse: Generalize
Space Ambiguity Distribution Space
Carving Carving

* Monocular depth is inherently ambiguous.

Albedo vs Shading Scale / Degree of Convexity
Possible depth maps Possible depth maps
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Fuse: Generalize
Space Ambiguity Distribution Space
Carving Carving

* Represent depth as a distribution.

e Distribution can be multimodal.

Albedo vs Shading Scale / Degree of Convexity
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Possible depth maps Possible depth maps

Multimodal Example
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Generalize
Space
Carving

* Generalized space carving

 Classical space carving only works with point estimates, i.e. no uncertainties.
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Generalize

Space
Carving

* Generalized space carving

 Classical space carving only works with point estimates, i.e. no uncertainties.

* Probabilistic analogue: Ambiguities are only resolved once information on multiple views are
fused together.

* Pick the mode that satisfies the different views.

* Mode seeking vs mean seeking:

* Expected depth would fall to the mean of multimodal distributions. The mean is not necessarily
a valid depth.

* We instead want to find a consistent mode, which is valid.
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— p == argmingKL(p|lq)  =---

Multimodal Example
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Our Ambiguity-Aware Prior

* Qur prior represents depth as a distribution, to handle ambiguity.

e This distribution can be multimodal.

* Represent ambiguities and capture variable modes through samples via
conditional Implicit Maximum Likelihood Estimation (cIMLE).

[2] Multimodal Image Synthesis with Conditional Implicit Maximum Likelihood Estimation. K. Li, et. al., IJCV 2020. N 14



Our Ambiguity-Aware Prior
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[2] Multimodal Image Synthesis with Conditional Implicit Maximum Likelihood Estimation. K. Li, et. al., IJCV 2020. [\ °J )

[4] Learning to Recover 3D shape from a Single Image. W. Yin, et. al., CVPR 2021.
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Our Ambiguity-Aware Depth Estimates

Scale /
Degree of
Concavity

Non-opaque = iz |
surfaces gt

Y 96



Why does it work?

Train Img

Test Img Samples from our ambiguity-
aware prior

Labeled depth
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SCADE

Input View 1 Samples from our Ambiguity-Aware Prior

Ambiguous!
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SCADE

Input View 1 Samples from our Ambiguity-Aware Prior

* Resolve ambiguities by fusing together information from multiple views.

Y
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Space Carving Intuition




SCADE

* We distill the consistent hypotheses
for each view into a global 3D
geometry represented with a NeRF.

* We introduce our novel space
carving loss on the two
distributions:

1. Ambiguity-aware prior
2. Ray termination distance from NeRF




SCADE

Our Space Carving Loss

' 2

Espace_carving(r) o ]rg[ll\l;[l] ” Xi — y j "2
* The learned depth distribution (E[N]
should be consistent with some

depth hypothesis in every view.

e fi AS /L
* Mode seeking : finds the * '

consistent agreement across
views.

 Sample-based loss on the
distribution instead of moments A\

leads to supervision in 3D instead i_l!l'.-.;. _‘.;’. ﬂ“ mr

of 2D. S




Results — In-the-Wild Demo

Vanilla NeRF

/ A
AN
[ I | |
| ¢/

N A4
23



Results — Scannet Demo

Vanilla NeRF DDP (out-domain)
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Results — Tanks and Temples Demo

Vanilla NeRF




Results

PSNR 1 SSIM t LPIPS |
| PSNRT | SSIMt | LPIPS| Vanilla NeRF [75]|  19.09 0.700 0.437
Vanilla NeRF [24]|  19.03 0.670 0.398 DDP [*7] 19.84 0.727 0.382
NerfingM VS [47] 16.29 0.626 0.502 SCADE 21.48 0.736 0.356
IBRNet [41] 13.25 0.529 0.673
MVSNEeRF [3] 15.67 0.533 0.635 thaow
DS-NeRF [(] 20.85 0713 0.344 Table 2. In-the-wild Results.
DDP [32] 19.29 0.695 0.368
SCADE (Ours) | 21.54 ‘ 0.732 ‘ 0.292 ’ PSNR 1 \ SSIM + ’ LPIPS |
Table 1. ScanNet Results. Results for DS-NeRF and NerfingMVS Vanilla NeRF [] 17.19 0.559 0.457
follow what was reported in prior literature [32]. Because our DDP [ /] 18.23 0.631 0.377
setting requires out-of-domain priors, the results for DDP are with SCADE ‘ 2032 ’ 0.663 ’ 0.348

out-of-domain priors. The results of DDP with in-domain priors
are (20.96, 0.737, 0.236) for PSNR, SSIM and LPIPS, respectively.

Table 1. Quantitative results for the Tanks and Temples [ ']
dataset.
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Rendered Depth ~ Fusion Depth Err Fusion Zoomed-Out

DDP |

SCADE

GT Depth
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